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A1. INTRODUCTION

A stationary first-order autoregressive process with exponential marginal

distributions was defined in Gaver and Levis (Ref. 1). The process is defined

by the following recursion:

.n Pn-1 +In where 0 C p<1 (1)

and In- 0 with probability p, In - I with probability I - p, and {En is an

independent identically distributed (i.i.d.) sequence of exponential random

variables with rate parameter A. The {Inl sequence is also i.i.d. and is

"* independent of {Bn .

The sequence is a special case of the EARA(1,1) sequence studied in

Jacobs and lvis (Ref. 2). Properties of the sequence are given in Gaver and

Lewis (Ref. 1), Jacobs and Lewis (Ref. 2), and Chernick (Ref. 3). A relation-

ship between the sequence (which is denoted by KAR(1)) and another Narkovian

exponential process (Tavares (Ref. 4)) is pointed out in Chernick, et. al.

(Ref. 5).

In section 5 of Gaver and Lewis (Ref. 1) it is observed that when

p > 0 it is possible to determine p exactly., If we let Zn X./X , we see

that Zn -a p when In is zero. Because P(In - 0)-p > 0, I nwill be zero Infi-

nitely often. By waiting for the first repeated value of Zns we find

that p is equal to this repeated value. The quantity p will also be the

minimum value for Zn because

I- n+1 Kn+1
.z = o + (2)n X

n

and ) 0 for each n.

We note that Z n has a continuous distribution when I,,+, I and has probability

p concentrated at p. So the only value that will repeat in the sequence

Is p. In practice other values will have a small probability of occurrence

due to the discreteness of the random number generator.

.3



I

* Gaver and Lewis (Ref. 1) point out that If ve use the stopping time

T - min I n:Z repeats its previous minimum value)

* then T io the sum of two geometric random variables plus one. So T has

expectation I + (2/p) and variance 2(1-0)/p 2 . Clearly if P is not too small

the expected value of T and its variance wil be small. In fact, it is easy

to determine the exact probability distribution for T,

P(T-n) - (n-2) .2 (,_,)n- 3  for n .3 (3)
M-o for n(0.

From Sq. (3) it is easy to determine that

P(Dn) - (1+(n-3)p )(-n-3 for n A (4)
for n 43.

So as long as p is not very small it is unlikely that T will be very large.

On the other hand, If there is a possibility that P is small and one cannot

afford to take- more than, say, no samples, we would recommend uslug the

stopping time T' where

T' - min(T, n0 ).

* UMen T >no0 the logical choice for an estimate of p Is

m mn {Zn : n -4 T'}.

The etimatorP Is greater than or equal to P and the bias will be small for

. reasonably large n.

Lawrance and Lewis (3ef. 6) have generalized the RUMA model to higher

order autoregressive and moving average terms. In particular, they define the

,AR(p) processes as follows

* 4



SX 1-1 with probability al
'I1 a2Xl1 2  with probability a2 2 +C (5)

i- 1p with probability a

where a 1 - (1 a2) a - i 2  aj

and at - (1I2 )I , £ - 2, ... , p-, 1 at ) 0

for 1-1,2, ... , p

and e has the distribution required so that X, has an exponential distribu-

tion with parameter A for each 1. For p > 2 the requirement that such an

I.I.d. sequence exists Imposes additional constraints on the parameters.

Lawrence and Lewis derive the distribution for e1 explicitly only in the case

p-2 .

Gaver and Lewis (Ref. 1) showed that for the ZAR(1) process. once p has

been determined through the sequential estimation procedure, the I's can be

* recovered exactly for 0)2. Because the sequence I anU is i.i.d. exponential

with the rate parameter X, the usual maximia likelihood estimates for A can be

determined. In section 2 of this report, it Is demonstrated that a generali-

zation of the sequential stopping rule can be used to explicitly determine the

a I 's for each 1. Section 3 discloses how a conditional likelihood estimator

can be determined for X. For p )2 the non-zero C 'a cannot all be recovered

and hence the generalization of the result for p-i is not straightforward.

*Explicit results are obtained for the case p-2.
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2. DETERMINING TRE AUTOREGRESSIVE PARAMETERS

Because the required distribution for the lenI sequence always has

positive probability concentrated at zero, it is possible to determine

al' 02 ... , ap by keeping track of the ratios

XI XI Xi IX,x- -' "" x-p" Once the value of _ is repeated, that repeated
1-I 1-2 i-p I-

Xi
value is ak . The stopping time T is then the smallest n such that - has

Xi -k
been repeated for all k m 1,2, ... , p.

For the case when p - 2, w shall determine the distribution of T, its

expectation and variance.

The EAR(2) process of Lawrance and Lewis is given as follows:

a a I J0 _ I  with probability I -a 2:}_ "X + ei

I 2 l-2 with probability a2 1

where

0 with probability al/(l + 01 - 02)

X with probability (I - aI) (I - a2)/( 8)

with probability (1 - a2) ( - 02)2/{(1 +01
- 2)(1 - 8)}

and 8 = (1 + a - a2) a2 and {Elj Is an i.i.d, exponential sequence with

parameter A.
Let T1 - mo n: x is the same for two values of i 4 nand T2 - min

{: -2 to the sam for two values of I . Then let T- max {TI T2 1.

Now l t - a 11 with probability PI C gl(l - a2)/(1 + al - o2 )and X, =

2X_2 with probability P2 - 121l + 01 - 02).

7
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we consider the stochatic sequence fytj1I w lr - 0, 1 or 2. The

7tare Independent random variables with P[yi " 1] - P1. P[yj " 2] - 2
a" d Ffy,- 0] 1 .- P - . Let V be the first time that both I and 2 are

repeated. Clearly T - V + 1.

Simple combinatorial arguments show that P[V - n + 11 - P[T - n + 2] -

a jp2[(I P n- 1  -.) 1 ] + P2 [(1 - P) 1 U- - - p)nl*-1

n(n - 1 2 (P1 + P2)(1 PI - p2)
n-2 for a> 4. E(T) -I + E(V) and

* Var(T) -Var(V). Computatious show

"(T) + 2 2 2 2PIP 2

1 2 1 2 (I + P2)

and
,2P_

Yar(T) 2 2 2 2 2 12
- r -y T- - (P + P (P +  2  ( + 3

1 1  IF 2  2 1+ (F+ 2) ( 1 P 2)

321 F 2  1 F

(PI + P2 ) (PI + P2 )

For 1 0.5 and a2 - 0.4, R(T) - 13.86, whereas for the LAR(1) process

S with P - 0.5 Z(T) - 5, so I(T) increases significantly a the order of the

process increases. In princple the distribution of T can be determined for

any order p but apparently the distribution becomes more coplicated. Clearly

3(T) grews as the order Is increased and probably Var(T) also grovs as the

order is Increased. For higher order models it may be necessary to truncate

the stopping time. Nowever, it is not clear how one would estimate the

a's which have not been determined by repetition.

The gina first order autoregressive process of Gaver and Lewis (Ref. 1)

(G*1(1)) can be goneralised to higher order models in the same way that

*! Lowrance and Lewis generalized the KAR(1) process. In fact, the GA(p)

process can be thought of as the *um of k ZAR(p) processes when the parneter

k is an Integer. It Is-obtained in the following way:

SLet ,, ,,, ... , Xx be k IhZ(p) processes each with the
*"1 si parameters 1, 2 ""o a and A. The processes are related In that

p
8
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if 'n1 -r(n-)1 + CnI then Kn2 - 2rX(n-1)2 + Ou2 P ""'

xnp - arX(n-l)p + cup for r - 1, 2, ... , p. The sequences

(nl} , C2} , .} are independent. Define

k. -- i
S Sn  ni•

'4

Then Sn Is a GAi(p) process and Just as in Eq. (5) we have

' "I S -1 with probability aI

1 2 1-2 with probability a 2 +

a S with probability a
p i-p p

where

p
&1"(1-a), .- 0 2 f a " t A(l ) (6)

J-2 J-2 4 (I

A f 2, ... , p - 1, 1 A a, ) 0 for i - 1, 2, ... , p

and

k
I I

:-" The determination of the a 'a for the GAR(p) process is the sam as for

the RAR(p) process. Secause the stopping time T depends only on the sequence

q fy,}f when p - 2, the stopping tim for the GAR(2) process has the same dis-
i-i

tribution as for the AR(2) process.
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3. ESTIK&TION (V LAMBDA

Once the a 'a have been determined for 1.1,2, *.,p me am compate the

following residuals: ril - 11 - l_ ri2 -1 - S2X/2 ... rip - Xf -

a p i-p . When rij - 0 for som J this indicates that ej - 0 and X,- 9jj.
We can then determine a conditional likelihood for the residuals given the set

of ej which are zero. For those I for which r,. * 0 for any e, 11 is greater

than zero.

We shall now consider the case p - 2 for simplicity. Let II -

[: rll > 0 and r12 > 01, 12 - [I: rll < 0 and ri2 > 01 and 13 -

[1: rl > 0 and r12 < O and let

3
I- U I.!ii z.-i I

Let k be the number of elements in I. When I112, 1 " r12 > 0, and when Jel,3

'" ril > O. If Jell ms do not know whether ei g ril or ei - r120 For '112lielhod s r1n2  for is - r l  hnII

the conditional likelihood Is As and for I1It When te

ws ly know that el > 0 and Is either rll or r1 2.

Consequently, the conditional likelihood is

(1 -2)e 11 + a2e r2].

Because the e 'a are independent given that they are not zero, the conditional

likelihood Lc is given by

ii' [-Ar, -Xr2 -Ar2 -Ar1

Lc" Ak I 1 - a2 )e + 02. 12) e 12 i • 1

S11
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Maximizing Lc yields a conditional maximum likelihood estimator and gener-

alizes the method of Gaver and Lewis. In general, for the pth order process

there will be 2P-1 sets I to consider since it is possible for tit to be less

than zero or greater than zero for each i and t but rit cannot be less than

zero for I fixed and each t.

Let

2 P-1

I U I

°-1

and k be the number of elements in I. Then the conditional likelihood is

c " iIp J1-A P ig 2 -

The Pij'S depend on which rlj's are less than zero and in particular Pij - 0

if rtj < O .

Another reasonable way to estimate X when p - 2 is obtained by consider-

Ing the following equations.

- ( I@ 1 -1 + @2(- ) Xd 2 ) - I for 1 - 3,4 ,..., n

where

P(Yj 0) 1 2 1-P (y, 1) and the sequence ly (7)

is itl.d, and independent of X, X2,..., X n  '.

Because E(c1) I I/X and E(yt) = I - 2,

-1 n2

_ 1! fXj - *1 (1 - 82) Xj_ - @2 Xj_2)• 1-3

is an unbiased and consistent estimate for 1/X. Consequently

12
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Nn

wili be a consistent estimator for X.

For the GAII(p) with k known, the conditional likelihood approach could be

- employed. The simple approach given in the preceding paragraph can also be

used. E(e )-k/A and so the estimator
n

n 1- 2~ ~J-1 ~2 J-2

j =3

will be a consistent estimator for X.

13



4. CONCLUSIONS

For low order EAR or GAR models this sequential paramter estimation

procedure provides a satisfactory way of determining the a I's and then

estimating A. Table 1 shows results of simulating the process for various

values of a and a2 The stopping time T is replicated fifty time and the

1"2

sample mean (T), sample variance (S2) ar oprdwt hi horetical

values E(T) and V(T) respectively. Also, the maximum value of T(Tmax) Is

given for each a~ and a2 Even for small values of the a. 's It may be

possible to use the stopping tie because T Is unlikely to exceed 500.

Considering the X1 Is to be the interarrival times for a point process, the EAR

process Introduces a correlation structure to the* time between events and

hence generalizes the Poisson process. Generalizations of the Poisson process

are important because they allow for greater flexibility In modelling series

of failure times. These models can then be used to assess the risks

associated with rare catastrophic events such as an accident at a nuclear

power plant.

1
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Table 1. Simulatlon of -he EAR(2) Process

1 2_ V(T)- TinX

0.2 0.1 111.12 113.64 5865.9 5932.9 356

0.2 0.2 51.90 46.34 1096.7 702.8 123

* 0.2 0.3 32.95 34.06 320.5 407.3 85

0.2 0.4 24.41 22.58 106.9 195.0 46

0.4 0.1 66.07 68.18 2021.6 2033.5 232

0.4 0.2 31.53 29.56 382.6 363.0 85

0.4 0.3 20.53 20.30 112.1 163.7 64

0.4 0.4 15.63 14.60 36.3 36.7 37

0.5 0.1 57.14 61,48 1492.7 1999.5 232

0.5 0.2 27.48 27.96 283.8 342.0 85

* 0.5 0.3 18.05 18.80 83.2 140.4 51

* 0.5 0.4.. 13.88 13.00 26.5 27.1 29

16
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